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Counting 
Based on a handout by Mehran Sahami 

 
Although you may have thought you had a pretty good grasp on the notion of counting at the age 
of three, it turns out that you had to wait until now to learn how to really count.  Aren't you glad 
you took this class now?!  But seriously, below we present some properties related to counting 
which you may find helpful in the future. 
 
Sum Rule 
 

Sum Rule of Counting: If the outcome of an experiment can either be one of m outcomes or one 
of n outcomes, where none of the outcomes in the set of m outcomes is the same as the any of the 
outcomes in the set of n outcomes, then there are m + n possible outcomes of the experiment.  
 
Rewritten using set notation, the Sum Rule states that if the outcomes of an experiment can 
either be drawn from set A or set B, where |A| = m and |B| = n, and A Ç B = Æ, then the number 
of outcomes of the experiment is |A| + |B| = m + n. 
 
Example 1 
Problem: You are running an on-line social networking application which has its distributed 
servers housed in two different data centers, one in San Francisco and the other in Boston.  The 
San Francisco data center has 100 servers in it and the Boston data center has 50 servers in it.  If 
a server request is sent to the application, how large is the set of servers it may get routed to? 
 
Solution: Since the request can be sent to either of the two data centers and none of the machines 
in either data center are the same, the Sum Rule of Counting applies.  Using this rule, we know 
that the request could potentially be routed to any of the 150 (= 100 + 50) servers. 
 
Product Rule 
 

Product Rule of Counting:  If an experiment has two parts, where the first part can result in one 
of m outcomes and the second part can result in one of n outcomes regardless of the outcome of 
the first part, then the total number of outcomes for the experiment is mn. 
 
Rewritten using set notation, the Product Rule states that if an experiment with two parts has an 
outcome from set A in the first part, where |A| = m, and an outcome from set B in the second part 
(regardless of the outcome of the first part), where |B| = n, then the total number of outcomes of 
the experiment is |A| |B| = mn. 
 
Note that the Product Rule for Counting is very similar to "the basic principle of counting" given 
in the Ross textbook. 
 
Example 2 
Problem: Two 6-sided dice, with faces numbered 1 through 6, are rolled.  How many possible 
outcomes of the roll are there? 
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Solution: Note that we are not concerned with the total value of the two dice, but rather the set 
of all explicit outcomes of the rolls.  Since the first die1 can come up with 6 possible values and 
the second die similarly can have 6 possible values (regardless of what appeared on the first die), 
the total number of potential outcomes is 36 (= 6 * 6).  These possible outcomes are explicitly 
listed below as a series of pairs, denoting the values rolled on the pair of dice: 
  

(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6) 
(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6) 
(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6) 
(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6) 
(5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6) 
(6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6) 

 
Example 3 
Problem: Consider a hash table with 100 buckets.  Two arbitrary strings are independently 
hashed and added to the table.  How many possible ways are there for the strings to be stored in 
the table? 
 
Solution: Each string can be hashed to one of 100 buckets.  Since the results of hashing the first 
string do not impact the hash of the second, there are 100 * 100 = 10,000 ways that the two 
strings may be stored in the hash table. 
 
The Inclusion-Exclusion Principle 
 

Inclusion-Exclusion Principle: If the outcome of an experiment can either be drawn from set A 
or set B, and sets A and B may potentially overlap (i.e., it is not guaranteed that A Ç B = Æ), 
then the number of outcomes of the experiment is |A È B| = |A| + |B| - |A Ç B|. 
 
Note that the Inclusion-Exclusion Principle generalizes the Sum Rule of Counting for arbitrary 
sets A and B.  In the case where A Ç B = Æ, the Inclusion-Exclusion Principle gives the same 
result as the Sum Rule of Counting since |Æ| = 0. 
 
Example 4 
Problem: An 8-bit string (one byte) is sent over a network.  The valid set of strings recognized 
by the receiver must either start with 01 or end with 10.  How many such strings are there? 
 
Solution: The potential bit strings that match the receiver's criteria can either be the 64 strings 
that start with 01 (since that last 6 bits are left unspecified, allowing for 26 = 64 possibilities) or 
the 64 strings that end with 10 (since the first 6 bits are unspecified).  Of course, these two sets 
overlap, since strings that start with 01 and end with 10 are in both sets.  There are 24=16 such 
strings (since the middle 4 bits can be arbitrary).  Casting this description into corresponding set 
notation, we have: |A| = 64, |B| = 64, and |A Ç B| = 16, so by the Inclusion-Exclusion Principle, 
there are 64 + 64 – 16 = 112 strings that match the specified receiver's criteria. 
 
 
 

                                                
1 “die” is the singular form of the word “dice” (which is the plural form). 
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Floors and Ceilings: They’re Not Just For Buildings Anymore… 
Floor and ceiling are two handy functions that we give below just for reference.  Besides, their 
names sound so much neater than “rounding down” and “rounding up”, and they are well-
defined on negative numbers too.  Bonus. 
 
Floor Function 
The floor function assigns to the real number x the largest integer that is less than or equal to x.  
The floor function applied to x is denoted ëxû. 
 
Ceiling Function 
The ceiling function assigns to the real number x the smallest integer that is greater than or equal 
to x.  The floor function applied to x is denoted éxù. 
 
Example 5 
ë1/2û = 0 ë-1/2û = -1 ë2.9û = 2 ë8.0û = 8 
 
é1/2ù = 1 é-1/2ù = 0 é2.9ù = 3 é8.0ù = 8 
 
 
The Pigeonhole Principle 
 

Basic Pigeonhole Principle:  For positive integers m and n, if m objects are placed in n buckets, 
where m > n, then at least one bucket must contain at least two objects. 
 
In a more general form, this principle can be stated as: 
 

General Pigeonhole Principle:  For positive integers m and n, if m objects are placed in n 
buckets, then at least one bucket must contain at least ém/nù objects. 
 
Note that the generalized form does not require the constraint that m > n, since in the case where 
m £ n, we have ém/nù = 1, and it trivially holds that at least one bucket will contain at least one 
object. 
 
Example 6 
Problem: Consider a hash table with 100 buckets.  950 strings are hashed and added to the table. 
 

a) Is it possible that a bucket in the table contains no entries? 
 

b) Is it guaranteed that at least one bucket in the table contains at least two entries?   
 

c) Is it guaranteed that at least one bucket in the table contains at least 10 entries? 
 

d) Is it guaranteed that at least one bucket in the table contains at least 11 entries? 
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Solution:  
a) Yes.  As one example, it is possible (albeit very improbable) that all 950 strings get 

hashed to the same bucket (say bucket 0).  In this case bucket 1 would have no entries. 
 

b) Yes.  Since, 950 objects are placed in 100 buckets and 950 > 100, by the Basic 
Pigeonhole Principle, it follows that at least one bucket must contain at least two entries. 

 

c) Yes.  Since, 950 objects are placed in 100 buckets and é950/100ù = é9.5ù = 10, by the 
General Pigeonhole Principle, it follows that at least one bucket must contain at least 10 
entries. 

 

d) No.  As one example, consider the case where the first 50 bucket each contain 10 entries 
and the second 50 buckets each contain 9 entries.  This accounts for all 950 entries (50 * 
10 + 50 * 9 = 950), but there is no bucket that contains 11 entries in the hash table.   

 
An Example with Data Structures (Example 7) 
 

Recall the definition of a binary search tree (BST), which is a binary tree that satisfies the 
following three properties for every node n in the tree: 
 

1. n's value is greater than all the values in its left subtree. 
 

2. n's value is less than all the values in its right subtree. 
 

3. both n's left and right subtrees are binary search trees. 
 
Problem: How many possible binary search trees are there which contain the three values 1, 2, 
and 3, and have a degenerate structure (i.e., each node in the BST has at most one child)? 
 
Solution: We start by considering the fact that the three values in the BST (1, 2, and 3) may have 
been inserted in any one of 3! (=6) orderings (permutations).  For each of the 3! ways the values 
could have been ordered when being inserted into the BST, we can determine what the resulting 
structure would be and determine which of them are degenerate.  Below we consider each 
possible ordering of the three values and the resulting BST structure. 
 

1, 2, 3  1, 3, 2  2, 1, 3  2, 3, 1  3, 1, 2  3, 2, 1 
 
 
 
 
 
 
 
 
 

We see that there 4 degenerate BSTs here (the first two and last two). 
 
Bibliography 
For additional information on counting, you can consult a good discrete mathematics or 
probability textbook.  Some of the discussion above is based on the treatment in: 
 

K. Rosen, Discrete Mathematics and its Applications, 6th Ed., New York: McGraw-Hill, 2007. 
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